Some tips on 6-Nitroindoline

The synthetic route of 19727-83-4 has been constantly updated, and we look forward to future research findings.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 19727-83-4, name is 6-Nitroindoline, A new synthetic method of this compound is introduced below., Computed Properties of C8H8N2O2

PREPARATION 5 1-(3-Chloropropionyl)6-nitroindoline 8.2 g (50 mmol) of 6-nitroindoline (prepared as described in Preparation 4) were dissolved in 100 ml of acetone, and 6.35 g (50 mmol) of 3-chloropropionyl chloride were added to the solution while ice-cooling, which resulted in the reaction mixture becoming a suspension. This suspension was stirred at room temperature for 1 hour, after which it was heated under reflux for 2 hours, and formed a solution. The resulting solution was cooled to room temperature, and then 10% w/v aqueous hydrochloric acid was added, and the precipitated crystals were collected by filtration. The crystals thus obtained were dried over phosphorous pentoxide in a desiccator under reduced pressure by means of a vacuum pump overnight to obtain 12.7 g (50 mmol) of the title compound as crystals, melting at 127-128 C. (yield: 100%). 1 H Nuclear Magnetic Resonance (200 MHz, CDCl3) delta ppm: 2.95 (2H, triplet, J=6.7 Hz); 3.32 (2H, triplet, J=8.6 Hz); 3.93 (2H, triplet, J=6.7 Hz); 4.22 (2H, triplet, J=8.6 Hz); 7.30 (1H, doublet, J=8.2 Hz); 7.93 (1H, doublet of doublets, J=2.0 & 8.2 Hz); 9.03 (1H, doublet, J=2.0 Hz). Mass Spectrum (m/z): 254 (M+), 218, 164, 118.

The synthetic route of 19727-83-4 has been constantly updated, and we look forward to future research findings.